Растворенные газы (углекислый газ, сероводород, кислород)
Углекислый газ
Углекислый газ – источник углерода для растений, без которого не было бы жизни в воде. Однако слишком высокие концентрации его угнетают жизненные процессы. Углекислый газ оказывает существенное влияние на концентрацию водородных ионов. Кроме того, он является важным фактором круговорота углерода в природе. В реках и озерах концентрация углекислого газа редко превышает 20–30 мг/л. Максимум его бывает в конце зимы.
Присутствие в пресных водоемах растворенного СО2 обусловлено биохимическими процессами окисления органических веществ, содержащихся в водоемах и в почве, а также дыханием водных организмов и выделением его при геохимических процессах.
Сущность метода
Содержание углекислоты определяют титрованием 0,1 н раствором NaOH в присутствии фенолфталеина до появления розовой окраски раствора, соответствующей окраске стандартного раствора сравнения, рН которого по фенолфталеину равен 8,4:
NaOH + CO2 = NaHCO3 (19)
Реактивы и оборудование
– коническая колба на 250 мл;
– дистиллированная вода;
– 10% раствор NаОН;
– 0,1% раствор фенолфталеина.
Проведение анализа
Для приготовления раствора сравнения в колбу наливают 200 мл дистиллированной воды, прибавляют 0,5 мл 10% раствора едкого натра и 0,2 мл разбавленного (0,1%) раствора фенолфталеина.
Концентрацию растворенного углекислого газа определяют по формуле
х = , (20)
где х - концентрация углекислого газа;
Vх - объем NaOH, пошедший на титрование, соответственно;
N - нормальность раствора NaOH;
V - объем исследуемой воды, взятой на титрование, мл.
Сероводород
Сероводород встречается в основном в подземных водоисточниках, образуясь в результате восстановления и разложения некоторых минеральных солей, в поверхностных водах он почти не встречается, так как легко окисляется. Появление его в поверхностных источниках является следствием протекания гнилостных процессов или сброса сточных вод.
Сущность метода
Содержание сероводорода определяют колориметрически, используя реакцию сероводорода с ацетатом или нитратом свинца, в результате которой образуется осадок черного цвета PbS. В щелочной среде осадок растворяется. Интенсивность окрашивания раствора сравнивают со шкалой.
Приблизительно содержание сероводорода определяют с реактивом Каро (Приложение 4). При добавлении реактива Каро окраска раствора изменяется от светло-зеленой до интенсивно синей, в зависимости от концентрации сероводорода.
Реактивы и оборудование
– щелочной раствор соли свинца (к 5% раствору нитрата или ацетата свинца добавить порциями 10% раствор щелочи до растворения образующегося осадка, затем ввести еще 25 мл);
– стандартный раствор сульфида натрия, содержащий 1 мг H2S/мл, (растворить 0,705 г кристаллического химически чистого сульфида натрия в 1 л дистиллированной воды), раствор нестойкий;
– шкала стандартных растворов. В пробирки добавляют 1, 2, 3, 4 и 5 мл стандартного раствора сульфида натрия. Затем доводят объем до 20 мл щелочным раствором соли свинца.
Проведение анализа
В пробирку наливают 10 мл исследуемой воды и прибавляют 3 мл реактива Каро. В зависимости от содержания сероводорода в воде окраска изменяется от светло-зеленой до интенсивно-синей. Параллельно к 10 мл дистиллированной воды прибавляют 3 мл реактива Каро и сравнивают полученную окраску с окраской исследуемой воды. Содержание сероводорода определяют по табл.3.2
Таблица 3.2
Приближенное определение сероводорода
Окраска раствора |
Содержание сероводорода, мг/л |
При рассматривании сверху отсутствует |
0,03 |
При рассматривании сверху светло-зеленая |
0,06 |
Через 2 минуты при рассматривании сбоку разницы с контрольной пробиркой нет, сверху зеленоватая |
0,1 |
Через 1 минуту при рассматривании сбоку – слабая светло-зеленая |
0,2 |
Через ½ мин – светло-зеленая |
1,0 |
Через ½ мин – зелено-синяя |
2 |
Растворенный кислород (метод Винклера)
Содержащийся в воде растворенный кислород поступает из атмосферного воздуха, а также образуется в результате фотосинтеза водорослями органических веществ (углеводов) из неорганических (Н2СО3, H2O). Содержание кислорода в воде уменьшается вследствие протекания процессов окисления органических веществ и потребления его живыми организмами при дыхании.
Определение растворенного в воде кислорода проводят йодометрическим титрованием в присутствии крахмала (метод Винклера). Метод Винклера применим для определения кислорода в природной воде при содержании в воде не более 0,1 мг/л азота нитратов, не более 10 мг/л окисного железа, не более 0,3 мг/л активного хлора и при окисляемости не более 15 мгO2/л.
Сущность метода
Метод Винклера представляет собой йодометрическое титрование, когда о концентрации О2 судят по количеству выделившегося йода.
В склянку с пробой вводят раствор сульфата или хлорида Мn (II) и щелочной раствор КI. Мn (II) реагирует с КОН, образуя гидроокись марганца (II) Mn(ОН)2.
2 KOH + MnСl2 ® Мn(ОН)2 ¯ + 2KCl (21)
Это осадок белого цвета, неустойчивое соединение, которое легко окисляется растворенным в воде кислородом до гидроокиси марганца (III) бурого цвета
4 Мn(ОН)2 ¯ + О2 + 2 H2O ® 4 Мn(ОН)3¯ (22)
Осадок H2МnО3 растворяют в соляной или серной кислоте. При этом Мn (III) восстанавливается до Мn (II) и выделяется свободный йод, в количестве, эквивалентном количеству растворенного кислорода:
2 Мn(ОН)3 + 3 H2SO4 ® Mn2(SO4)3 + 3H2O (23)
Mn2(SO4)3 + 2 КI ® 2 MnSO4 + K2SO4 + I2 (24)
Суммарное уравнение (22) и (23):
2 Мn(ОН)3 + 2 H2SO4 + 2 КI ® 2 MnSO4 + K2SO4 + I2 + 3H2O (25)
Выделившийся йод оттитровывают раствором тиосульфата натрия в присутствии крахмала:
I2 + 2 Na2S2O3 ® 2 NaI + Na2S4O6 (26)
Реактивы и оборудование
– 42,5% раствор МnСl2 4H2O;
– HCl или H2SO4, концентрированная;
– Na2S2O3, 0,01 н (фиксанал);
– крахмал, 1% раствор;
– щелочная смесь (70 г КОН и 15 г КI растворяют в дистиллированной воде и доводят общий объем раствора до 1000 мл).
Подготовка к проведению анализа
Калибровка склянок. Склянки взвешивают на технохимических весах сначала пустые, затем заполненные дистиллированной водой. Разность двух взвешиваний равна весу воды в склянке.
Заполнение склянки. Перед заполнением каждая склянка ополаскивается исследуемой пробой. Склянки заполняют доверху, переливая часть пробы. Заполнять осторожно, чтобы исключить попадание пузырьков воздуха. Попавшие в склянку пузырьки удаляют, оставив склянку открытой в течение 1 мин и постукивая по стенкам склянки. При заполнении склянки следует избегать попадания прямых солнечных лучей.
Консервирование пробы. Содержание растворенного кислорода в пробе фиксируют, добавляя в склянки поочередно: 1 мл MnCl2 и 1 мл щелочного раствора KI. Пипетки при этом держат под самой поверхностью воды. Потерянные 2 мл пробы учитывают при последующем расчете. После фиксации склянку закрывают и переворачивают несколько раз.
После этого пробы помещают в темное место для отстаивания осадка. Законсервированная проба может храниться в течение суток.
Проведение анализа
Количество растворенного кислорода определяют в откалиброванных склянках емкостью 150…200 мл.
После добавления осадителей (MnCl2 и KI) осадок отстаивают (см. консервирование пробы). После отстаивания пробы осадок растворяют, добавляя 1...3 мл концентрированной серной кислоты (кончик пипетки - под поверхностью раствора). Закрывают склянку пробкой и перемешивают пробу до полного растворения осадка. Затем отбирают аликвоту 25...100 мл в коническую колбу и титруют раствором тиосульфата натрия до соломенно-желтой окраски.
После этого добавляют 1...2 мл крахмала (появляется синяя окраска) и продолжают титровать тиосульфатом до полного обесцвечивания. Результат записывают. Повторяют определение 2...3 раза.
Концентрацию растворенного кислорода рассчитывают по формуле:
O2 = , мг/л (27)
где n - количество тиосульфата, пошедшего на титрование;
N - нормальность тиосульфата;
K - поправка на нормальность тиосульфата;
8 - эквивалентная масса кислорода;
1000 - пересчет на 1л пробы;
V1
- объем титрованной пробы;
V2 - количество утерянной пробы, равное объему реактивов (раствор KI и МnSO4), взятых для осаждения (при титровании всего объема склянки).