Водообеспечение промышленных предприятий - Промышленная экология 


<= Закрыть

Известные экологи

Владимир Вернадский

Эдуард Зюсс

 

Джеймс Лавлок

Водообеспечение промышленных предприятий

Химические производства относятся к водоемким. Большую часть воды расходуют для охлаждения и конденсации продуктовых потоков. В значительной части технологических процессов воду используют как растворитель или вводят в виде пара. Воду применяют и как реагент химических
реакций.

Основные пути улучшения водообеспечения промышленных предприятий следующие:

· разработка новых технологий, характеризующихся сокращением потребляемой воды и образующихся загрязненных стоков либо полным исключением воды из технологических операций;

·        создание локальных систем обезвреживания стоков отдельных производств, включающих извлечение из них и утилизацию ценных компонентов, подготовку очищенной воды к повторному использованию;

·        организация замкнутых водооборотных систем, включая сбор и использование очищенных сточных вод, паводковых вод и атмосферных осадков с территории предприятий.

 

Существенное снижение водопотребления достигается при замене водяного охлаждения воздушным. Действующими в отрасли нормами технологического проектирования водяное охлаждение допускается лишь в тех случаях, когда по каким-либо причинам воздушное охлаждение невозможно. Аппараты воздушного охлаждения могут быть использованы вместо градирен для отвода избыточного тепла воды. Градирни открытого типа сложны в эксплуатации, в обычных условиях унос капельной влаги из градирен достигает 0,3 % и более, при этом в районе градирен загрязняются воздушный бассейн и почва. Особенно эффективны закрытые оборотные системы с аппаратами воздушного охлаждения высокозастывающих продуктов. Воздушное охлаждение позволяет сократить потребность в охлаждающей воде на действующих предприятиях на 60-75 % и, следовательно, объем сточных вод на 25-45 %. Соответственно снижаются потери сырья, основных и побочных продуктов, уменьшаются капитальные затраты и эксплуатационные расходы на водопотребление и водоотведение (канализацию).

Водопотребление снижается также при замене барометрических конденсаторов смешения (для создания вакуума) поверхностными аппаратами. Расход охлаждающей воды при этом сокращается в 3-4 раза, экономится энергия на перекачку воды, уменьшаются газовые выбросы в атмосферу.

Экономии воды способствует комбинирование процессов, так как жесткие связи по сырью между блоками установок позволяют устранить промежуточное охлаждение продуктовых потоков, а избыточное тепло на одном блоке утилизировать на других.

Расход воды снижается при повторно-последовательном использовании охлаждающей воды как на отдельных технологических установках, так и на смежных установках и некоторых объектах общезаводского хозяйства. Особенно эффективно оно в случае предварительной стабилизации свежей и оборотной воды против выпадения и разложения солей жесткости или специальной химической водоочистке свежей воды. Воду при этом можно нагревать до более высоких температур, так как накипь на трубах не образуется, а перед поступлением на градирню предварительно охлаждать с утилизацией тепла для отопления помещений, теплиц или производства холода. При такой схеме расход воды уменьшается в несколько раз.

С созданием крупных комплексов на нефтехимических предприятиях сооружение локальных систем оборотного водоснабжения, канализации и очистки сточных вод экономически выгодно. В этом случае снижаются затраты на биологическую очистку сточных вод, улучшается контроль за их качеством, сокращаются потери продуктов, уменьшается загрязненность окружающей среды. Экономически целесообразна децентрализация оборотного водоснабжения на действующих заводах с подключением к оборотным системам ограниченного числа технологических установок. При рассредоточении оборотного водоснабжения и уменьшении объема циркулирующей воды можно использовать герметизированные напорные системы водооборота и канализации сточных вод.

На ряде предприятий США и Западной Европы предусмотрены раздельные системы канализации: ливневая, хозяйственно-фекальная, условно чистая для ливневых вод и несколько производственных. Это позволяет распределять сточные воды с учетом степени их загрязненности, качества и свойств загрязнителей, выбирать наиболее оптимальные и дешевые методы очистки для возвращения в оборотные системы. Некоторые типы вод, например слабощелочные и слабокислые, целесообразно отводить в одну систему для их взаимной нейтрализации и экономии реагентов.

Сточные воды, содержащие нефтепродукты, не следует смешивать со сточными водами, содержащими вещества, способные образовывать трудно разрушаемые эмульсии, стойкую пену или увеличивать потери от испарения.

 

Оптимальное решение проблемы предотвращения загрязнения водоемов и уменьшения дефицита воды ‑ создание экономически рациональных замкнутых систем водного хозяйства предприятий.

Необходимость и целесообразность создания замкнутых систем производственного водоснабжения обусловлены тремя основными факторами:

– дефицитом пресной воды. На увеличение дефицита пресной воды влияют не только непрерывный рост водопотребления, но и деградация качества воды природных водоисточников в результате поступления в них сточных вод;

– исчерпанием обезвреживающей (самоочищающей и разбавляющей) способности водоемов, в которые сбрасываются сточные воды;

– экономическими преимуществами по сравнению с очисткой сточных вод до соответствующих нормативов, позволяющих их сброс в открытые
водоёмы.

Основные принципы создания замкнутых водооборотных систем

Создание экономически обоснованных замкнутых систем водного хозяйства является весьма трудной задачей. Сложный физико-химический состав сточных вод, разнообразие содержащихся в них соединений и их взаимодействие друг с другом делают невозможным подбор универсальной структуры бессточных схем, пригодных для применения в различных отраслях народного хозяйства.

Вопросом первостепенной важности при создании замкнутых водооборотных систем является разработка научно-обоснованных требований к качеству воды, используемой во всех технологических процессах и
операциях.

В подавляющем большинстве технологических операций нет необходимости в использовании воды питьевого качества. Поэтому необходимо оценить допустимые пределы основных показателей качества воды, которые определяются следующими факторами:

– не должно ухудшаться качество получаемого продукта;

– должна обеспечиваться безаварийная работа оборудования; оно не должно разрушаться вследствие коррозии, на стенках не должны появляться отложения и т.д.;

– не влиять на здоровье обслуживающего персонала за счёт изменения токсикологических или эпидемиологических характеристик воды.

Исторически сложилось так, что при разработке технологических схем на качество воды не обращали внимания. Питьевая и даже техническая вода в подавляющем большинстве случаев удовлетворяла технологов, а использованную воду просто сбрасывали в водоёмы и только позднее стали направлять на очистные сооружения.

Общими задачами при разработке замкнутых водооборотных систем для всех отраслей народного хозяйства являются следующие:

– максимальное внедрение воздушного охлаждения вместо водяного: на многих предприятиях на охлаждение расходуется до 70 % всей используемой воды;

– размещение комплекса производств на промышленной площадке таким образом, чтобы было возможно многократно (каскадно) использовать воду в технологических производствах;

– последовательное многократное использование воды в различных или идентичных производствах должно приводить к образованию небольшого объема максимально загрязненных сточных вод, для обезвреживания которых можно подобрать достаточно эффективные (и, как правило, дорогостоящие) методы очистки;

– использование воды для очистки газов только тогда, когда из газов извлекаются и используются ценные компоненты, применение воды для очистки газов от твердых частиц допускается только в случае замкнутого цикла;

– обязательная регенерация отработанных кислот, щелочей и солевых технологических растворов с использованием извлекаемых продуктов в качестве вторичного сырья.

При создании замкнутых водооборотных систем промышленных предприятий водоподготовка и очистка сточных вод должны рассматриваться как единая система. Проектирование замкнутых систем проводится одновременно с проектированием основного производства.

 

Схемы водообеспечения  промышленных предприятий

При прямоточном водообеспечении вся забираемая из водоема вода после использования в технологическом процессе возвращается в водоем за исключением безвозвратных потерь в производстве и потерь со шламом на очистных сооружениях (рис. 8,а).

Схема повторного использования сточных вод после их очистки показана на рис. 8,б. Незагрязненные нагретые сточные воды поступают на охладительные установки (градирни, охладительные пруды), а затем возвращаются в оборотную систему водообеспечения. Загрязненные сточные воды поступают на очистные сооружения. После очистки часть отработанных сточных вод подают в систему оборотного водообеспечения, если их состав удовлетворяет нормативным требованиям.

Исходя из существующего технического уровня отраслей, повторно используется 92-98 % воды. В отдельных производствах этот показатель достиг 100 %, т.е. воду используют многократно без сброса загрязненных стоков в водоемы, а свежую воду добавляют в связи с естественной убылью (испарение, химическое превращение и др.). Так, на предприятиях нефтеперерабатывающей и нефтехимической промышленности оборотные системы обеспечивают 91 % производственных потребностей в воде.

 

Водообеспечение промышленных предприятий

 

Рис. 8. Схемы водообеспечения промышленных предприятий:

а - прямоточная; б – оборотная; 1 – предприятие; 2 – очистные сооружения:
3 - охладительные установки; I ‑ вода из источника; II ‑ безвозвратные потери воды; III ‑ вода, удаляемая со шламом; IV ‑ вода, сбрасываемая в водоем;
V ‑ потери воды на испарение и унос; VI ‑ оборотная вода после охладительных установок; VII  ‑ то же после очистных сооружений

 

Однако переход от частичных оборотных систем к полностью замкнутым оборотным системам связан не только с дополнительными капитальными затратами на строительство соответствующих очистных сооружений, но и с решением двух основных задач: устранением минерализации и покрытием потерь оборотной воды

При циркуляции в системе часть воды испаряется в градирнях, с поверхности открытых прудов и очистных сооружений, при удалении шламов и осадков, теряется в результате участия в химических реакциях, подвергается различным физико-химическим воздействиям, в том числе упариванию, в результате чего в ней увеличивается концентрация солей и накипеобразующих соединений. При многократном использовании в воде накапливаются механические взвеси, различные коррозионно-агрессивные соединения и микроорганизмы. Все это вызывает интенсивное отложение накипи и коррозию оборудования, ухудшает теплопередачу. Из-за увеличения содержания в воде солей и других примесей требуется вывод части воды и замена ее свежей.
С этой целью осуществляют так называемую подпитку, или продувку системы. Взамен сброшенной из водоема забирают свежую воду. Покрыть потери оборотной воды можно за счет бытовых сточных вод, а также дождевых и паводковых вод после предварительной их подготовки.

При организации оборотного водообеспечения предусматривают методы борьбы с карбонатными отложениями, биологическими обрастаниями, коррозией оборудования, а также методы подготовки подпиточной воды.

Накапливающиеся в оборотной воде соли образуют на теплообменной поверхности так называемые карбонатные отложения, более чем на 50 % состоящие из карбоната кальция. Основные методы снижения отложений:

1) обработка охлаждающей воды кислотой (обычно серной) для снижения общей щелочности воды;

2) фосфатирование путем введения в воду раствора гексаметафосфата натрия, тормозящего процессы кристаллизации и осаждения карбоната
натрия на стенках аппаратуры;

3) обработка воды магнитным полем, что вызывает быстрый рост кристаллов карбонатных и других отложений, которые сорбируют на своей поверхности ионы карбонатов кальция и магния, растут и выпадают в виде шлама, легко уносимого потоком.

При оборотном водоснабжении возникает проблема борьбы с биологическими обрастаниями. Разнообразные живые существа (бактерии), проникая из открытых водоемов в систему оборотного водоснабжения, поселяются на любой твердой поверхности, соприкасающейся с водой, развиваются, образуют поселения, называемые биологическими обрастаниями; сами организмы называются биогентами. Допустимой считается скорость развития биологических обрастаний теплообменных аппаратов и трубопроводов в оборотной воде не выше 0,07 г/(м2-ч), т.е. в течение месяца толщина нарастающего слоя должна быть не более 0,05 мм. Для борьбы с бактериальными биогентами применяют хлор, а для уничтожения водорослей ‑ медный купорос. Дозы и периодичность хлорирования определяют на основе лабораторных исследований оборотной воды. Водоросли развиваются в основном в теплый период года. Поэтому купоросом обрабатывают воду 3-4 раза в месяц в период с апреля по октябрь.

Содержащиеся в оборотной воде соли и другие примеси вызывают коррозию оборудования. Хлориды ускоряют коррозию вследствие увеличения кислотности воды и их разрушающего действия на пассивирующие пленки; сульфаты агрессивно действуют на бетон. Диоксид углерода замедляет образование защитных пленок. Для защиты от коррозии в оборотных системах применяют различные ингибиторы. Процесс коррозии приостанавливают хромат и бихромат калия. Они же замедляют биологические обрастания. Для снижения коррозии воду обрабатывают также фосфатами, которые образуют пленку, изолирующую металл от воды. В отличие от хроматов фосфаты благоприятствуют развитию биологических обрастаний, поэтому эти химикаты иногда применяют совместно. Один из способов защиты металла от коррозии ‑ защитные покрытия смолами, красками, лаками и эмалями, однако они недолговечны и восстановить их можно только во время
ремонта.

Для предотвращения и удаления карбонатных отложений и биологических обрастаний систему оборотного водообеспечения систематически очищают механическим способом, гидропневматической промывкой или с помощью химических реагентов.

Таким образом, полностью замкнутая система водообеспечения предполагает постоянный количественный и качественный состав воды, предотвращение коррозии оборудования, загрязнения системы как минеральными, так и биологическими отложениями, отсутствие сброса загрязненных вод в водоемы, ликвидацию сбросов другими способами.