<= Закрыть

Известные экологи

Владимир Вернадский

Эдуард Зюсс

 

Джеймс Лавлок

Динамические параметры популяций.

Гомеостазирование популяционных функций связано с такими показателями, как численность и плотность населения. Это положение исходно предусматривает динамический характер основных популяционных параметров: как численность популяции, так и ее выражение, отнесенное к единице пространства, не остается одинаковым во времени. Свойственные популяции процессы постоянного воспроизведения сопровождаются столь же постоянным отмиранием особей. В силу многих причин не остается неизменной и возможность заселения отдельных элементов ландшафта: «емкость угодий» меняется в сезонном и многолетнем масштабе, что определяет динамику параметров плотности населения даже при постоянном уровне репродукции. В конкретных популяциях, локализованных в определенных границах пространства, постоянно происходят процессы притока особей извне и выселения определенной части населения за пределы популяции. Все эти процессы детерминируют пульсирующий, динамический характер популяции как системы, составленной множеством отдельных организмов.

Численное соотношение различных категорий организмов в составе населения рассматривается как демографическая структура популяции.  При этом в первую очередь имеется в виду соотношение половых и возрастных групп; изменения этих показателей существенным образом влияют на темпы репродукции, а соответственно на общую численность популяции и ее изменения во времени.

Возрастная структура популяции. Этот аспект структуры популяций определяется соотношением различных возрастных групп (когорт) организмов в составе популяции. Возраст отражает, с одной стороны, время существования данной когорты в популяции, и в этом аспекте имеет значение абсолютный (календарный) возраст организмов. С другой стороны, возраст есть отражение онтогенеза; в этом аспекте большее значение имеет не календарный, а биологический возраст, определяющий стадийное состояние организмов, а вместе с тем их роль в популяционных процессах (продукция биомассы, участие в размножении и т. п.).

В составе ценопопуляций растений возрастная структура выражена несколькими периодами, включающими ряд определенных возрастных состояний организмов.

Ценопопуляции, состоящие преимущественно из особей прегенеративного периода - инвазионные; ценопопуляции, включающие все (или почти все) возрастные группы, определяются как нормальные; длительное самостоятельное существование может привести к утрате генеративного комплекса возрастных состояний; такая популяция теряет возможность самоподдержания, становится зависимой от внешних источников семян и квалифицируется как регрессивная. Динамика возрастного спектра отражает процесс развития ценопопуляции как системы от первичного зарождения до утраты самостоятельности — «большой жизненный цикл ценопопуляции».

Как и в популяциях растений, интенсивность размножения и темпы роста популяции животных в каждый данный момент определяются долей особей, находящихся в возрасте активной репродукции; процент неполовозрелых животных в составе популяции отражает потенциальные возможности воспроизводственной функции на ближайшее будущее.             Возрастные спектры меняются во времени, что, в частности связано с различием  уровней смертности в разных возрастных группах.

Для очень многих видов характерна повышенная смертность в младших возрастных группах (или в предимагинальных стадиях развития). У таких видов кривая выживания демонстрирует резкое падение в области младших возрастов, которое вскоре сменяется постепенным понижением, отражающим низкую и относительно равномерную смертность животных, переживших «критический» возраст. При равномерном распределении смертности по возрастам, т. е. в случае независимости причин смертности от специфических возрастных свойств, характер выживания в идеале представляется в виде диагонально снижающейся прямой линии, приближающийся к этому типу характер выживания свойствен в первую очередь видам, развитие которых идет без метаморфоза при достаточной степени самостоятельности и устойчивости рождающегося потомства, хотя идеально равномерной смертности, по-видимому, не существует. Во многих случаях видовая кривая выживания характеризуется комбинацией разных частей теоретических кривых.

Анализ параметров выживания и смертности в разных возрастных группах, открывает возможность расчета ожидаемой продолжительности жизни особей данной возрастной когорты. Составленные по основным демографическим параметрам таблицы выживания (life tables) могут служить основой анализа и прогнозирования популяционной динамики. При этом анализ возрастной динамики может быть основан на последовательных учетах численности отдельных возрастных когорт (как в приведенной таблице) или на статистическом анализе всех возрастных групп, существующих в данной популяции в период наблюдений .

Не менее четко выражены биологические, физиологические и функциональные отличия возрастных групп животных, обладающих сложным типом развития с одной или несколькими предимагинальньми стадиями.

Различные по своим свойствам когорты играют неодинаковую роль в жизни и динамике популяции. Долго живущие и поздно созревающие животные из осенних выводков обеспечивают переживание популяцией трудного по экологическим условиям зимнего периода, сохраняя способность к размножению. Именно эти зверьки составляют основу первого раннего весеннего цикла размножения и, дав потомство, довольно быстро отмирают. Их потомки — животные ранневесенних когорт,  отличаясь высокой " скоростью созревания, выполняют функцию максимально быстрого пополнения изреженной в течение не репродуктивного периода популяции. Именно эти когорты представляют собой активную продуцирующую часть популяции и ответственны за темпы и величину нарастания численности и биомассы от весны к осени. В реальных условиях подобная схема динамики возрастной структуры популяции оказывается более сложной.    Степень генетической сложности сезонных возрастных когорт зависит от масштабов включения в размножение зверьков разных возрастов, что происходит неодинаково в различные годы и связано с многолетними циклами численности.   

Половая структура. Соотношение полов имеет прямое отношение к интенсивности репродукции и самоподдержания популяций. Помимо этого, физиологические и экологические отличия самцов и самок увеличивают степень эколого-физиологической разнокачественности особей с вытекающим отсюда снижением уровня внутрипопуляционной конкуренции.

Половая структура динамична и в своей динамике тесно связана с возрастной структурой популяции. Это зависит от того, что соотношение числа самцов и самок заметно изменяется в разных возрастных группах. В связи с возрастом различают первичное, вторичное и третичное соотношение полов. В результате различного рода воздействий на характер развития, а также неодинакового уровня смертности плодов разного пола соотношение самцов и самок среди новорожденных животных — вторичное соотношение полов — отличается от генетически детерминированного. Третичное соотношение полов характеризует этот показатель среди взрослых животных и складывается в результате дифференцированной смертности самцов и самок в ходе онтогенеза. Этот показатель прямо определяет особенности репродуктивного процесса и отличается у разных таксонов животных.

Обобщая материал по особенностям половой структуры популяций млекопитающих, В.Н. Большаков и Б.С. Кубанцев  выделяют четыре типа динамики половой структуры. Для первого характерен неустойчивый половой состав популяции; соотношение полов меняется даже в разных местообитаниях, а также в относительно короткие промежутки времени. Происходит это как на уровне вторичной, так и третичной половой структуры. В результате соотношение полов, рассчитанное статистически за большой промежуток времени, обычно близко к единице. Такой характер динамики свойствен животным с коротким жизненным циклом, высокими показателями плодовитости и смертности и достаточно обширным ареалом (среди млекопитающих, например, насекомоядным).

Тип динамики с преимущественным преобладанием самцов на фоне колеблющегося полового состава отмечается у животных, не образующих крупных скоплений, популяции которых не достигают высокой плотности; видам, демонстрирующим такой тип динамики, обычно свойственны выраженные формы заботы о потомстве, связанные с большими затратами энергии. Из млекопитающих к этому типу принадлежат, например, хищники.

В противоположность этому у ряда видов на фоне примерно равного соотношения полов во вторичной половой структуре формируется преимущественное преобладание самок в третичном соотношении полов. У таких животных самцы отличаются меньшей продолжительностью жизни и при неблагоприятных условиях отмирают в большем количестве. Этот тип динамики половой структуры свойствен, например, номадным полигамным млекопитающим (копытные, ластоногие), отличающимся большой продолжительностью жизни и относительно низким уровнем воспроизводства.

Наконец, для ряда групп животных характерно относительное постоянство полового состава при приблизительно одинаковом количестве самцов и самок. Такой тип структуры свойствен узкоспециализированным стенобионтным видам, чаще отличающимся высокой плодовитостью (среди млекопитающих — выхухоль, крот, бобр).

Репродуктивный потенциал и рост популяции. Способность популяции к воспроизведению означает потенциальную возможность постоянного увеличения ее численности. Если отвлечься от лимитирующего влияния комплекса факторов внешней среды, рост численности популяции можно представить как постоянно идущий процесс, масштабы которого зависят от свойственной данному виду скорости размножения. Последняя определяется как удельный прирост численности за единицу времени.

При таких условиях неограниченного роста изменение численности популяции во времени выражается экспоненциальной кривой, описываемой уравнением Ni=No*ре", где No—исходная численность N, — численность в момент времени t, e — основание натуральных логарифмов. Если численность отложить в логарифмическом масштабе, ее изменения выразятся прямой линией, наклон которой в системе координат определяется величиной r . Описанная экспоненциальная модель роста популяции отражает ее потенциальные возможности размножения. Показатель мгновенной удельной скорости роста популяции r нередко определяют как репродуктивный потенциал популяции или ее биотический потенциал. Экспоненциальный рост популяции возможен лишь при условии неизменного, независимого от численности значения коэффициента r.

Естественный рост популяции никогда не реализуется в форме экспоненциальной модели; в крайнем случае, следует ей в течение относительно короткого отрезка времени. Объясняется это тем, что не только в природных, но и в оптимальных экспериментальных условиях рост численности ограничен комплексом факторов внешней среды и реально складывается как результат соотношения меняющихся значений рождаемости и смертности. В таких условиях коэффициент r не остается постоянным, а изменяется в зависимости от численности популяции (плотности населения). Наиболее близко естественный рост численности отражает логистическая модель роста популяции, в которой изменения численности во времени выражаются S-образной кривой, форма которой определяется зависимой от численности величиной соотношения рождаемости и смертности в условиях ограничения верхнего порога численности внешними условиями.

Динамика численности и популяционные циклы.

Соотношение плодовитости и смертности. Экологические механизмы динамики численности в принципе просты и заключаются в изменении соотношения плодовитости (рождаемости) и смертности в популяции.   Известна, например, чрезвычайно высокая плодовитость паразитов со сложным циклом развития; у таких животных вероятность прохождения отдельной особью полного цикла развития ничтожно мала, что эволюционно скомпенсировано высокой нормой плодовитости. Вообще, появление в эволюции каких-либо форм заботы о потомстве четко коррелирует со снижением видовой нормы плодовитости: у таких видов существенно снижается смертность в раннем возрасте, а сохранение высокого репродуктивного потенциала при сниженной смертности биологически невыгодно. Обратная пропорциональность связывает плодовитость со средней продолжительностью жизни, свойственной данному виду: более долгоживущие виды отличаются меньшей плодовитостью. По сути, это тоже отражает корреляцию плодовитости и смертности, но в этом случае речь идет об уровне смертности, определяемом не внешними факторами, а физиологией вида.

Видовые параметры плодовитости отражают, таким образом, средний уровень гибели, свойственный данному виду в многолетнем масштабе. В реальной обстановке конкретные величины как плодовитости, так и смертности испытывают постоянные колебания; соответственно этому меняется и уровень численности популяции и тенденции ее изменений во времени. На этой основе легко объяснить, а подчас и прогнозировать изменения численности, определяемые направленными сдвигами отдельных факторов и их комплексов.

Типы динамики численности и экологические стратегии.  Наряду с незакономерными и в большинстве случаев недолговременными изменениями численности, прямо связанными с положительным или отрицательным влиянием конкретных факторов, практически у всех исследованных видов обнаруживаются закономерные чередующиеся подъемы и спады численности, имеющие волнообразный, циклирующий характер и нередко охватывающие большие пространства. Такой характер динамики численности известен для насекомых, птиц, многих видов млекопитающих  и других животных. Именно такого рода колебания обычно и имеют в виду, когда говорят о проблеме динамики численности.

Характер закономерных изменений численности видоспецифичен и в целом связан с особенностями биологи  вида, его физиологии и места в естественных экосистемах.  Типы динамики населения: Стабильный тип характеризуется малой амплитудой и длительным периодом колебаний численности; внешне она воспринимается как практически стабильная. Такой тип динамики свойствен крупным животным с большой продолжительностью жизни, поздним наступлением половозрел ости и низкой плодовитостью. Это соответствует низкой норме естественной смертности, в том числе в результате эффективных механизмов адаптации к действию неблагоприятных факторов. Примером могут служить копытные млекопитающие (период колебаний численности 10—20 лет), китообразные, гоминиды, крупные орлы, некоторые рептилии и др.  Лабильный тип динамики отличается закономерными колебаниями численности с периодами порядка 5—11 лет и более значительной амплитудой (численность меняется в десятки раз). Характерны сезонные изменения обилия, связанные с периодичностью размножения. Такой тип динамики характерен для животных разного, но, как правило, не крупного размера с более коротким сроком жизни (до 10—15 лет) и соответственно более ранним половым созреванием и более высокой плодовитостью, чем у представителей первого типа. Повышена и средневидовая норма гибели. К этому типу динамики из млекопитающих относятся крупные грызуны, зайцеобразные, некоторые хищные; таков же общий характер динамики населения у многих птиц, рыб, насекомых с длинным циклом развития и некоторых других животных. Эфемерный тип динамики отличается резко неустойчивой численностью с глубокими депрессиями, сменяющимися вспышками «массового размножения», при которых численность возрастает подчас в сотни раз. Перепады ее от минимума до максимума осуществляются очень быстро (иногда в течение одного сезона); столь же быстро происходит спад численности, который в таком случае часто называют «крахом популяции». Общая длина цикла обычно составляет до 4—5 лет, в течение которых «пик» численности занимает чаще всего не более одного года; у некоторых животных (например, у мелких грызунов) на эти короткие циклы «накладываются» более продолжительные (10—11 лет), но часто такие «большие волны» более выражены охваченным вспышкой пространством, чем уровнем численности. Резко выражены сезонные колебания обилия особей.

Разные типы динамики фактически отражают разные жизненные стратегии. Концепции экологических стратегий (Р. Мак-Артур и Э. Уилсон). Суть этой концепции сводится к тому, что успешное выживание и воспроизводство вида возможно либо путем совершенствования адаптированности организмов и их конкурентоспособности, либо путем интенсификации размножения, что компенсирует повышенную гибель особей и в критических ситуациях позволяет быстро восстановить численность. Первый путь назван «К-стратегией»; представители этого типа — чаще всего крупные формы с большой продолжительностью   жизни;   численность   их   лимитируется преимущественно внешними факторами (коэффициент К в уравнении логистической модели роста означает именно численность, соответствующую «емкости угодий»), К-стратегия означает «отбор на качество» — повышение адаптивности и устойчивости, а r-стратегия — «отбор на количество» через компенсацию неизбежно больших потерь высоким репродуктивным потенциалом; это — поддержание устойчивости популяции через быструю смену составляющих ее особей. Этот тип стратегии более свойствен мелким животным с большой нормой гибели и высокой плодовитостью (r — коэффициент, отражающий скорость роста популяции). Виды с r-стратегией легко осваивают местообитания с нестабильными условиями и отличаются высоким уровнем энергозатрат на репродукцию. Выживание этих форм в условиях неблагоприятных абиотических воздействий и сильного пресса конкуренции определяется высоким репродуктивным потенциалом, позволяющим быстро восстановить любые потери в популяции.

Факторы динамики численности. В современной экологии факторы, ответственные за регулярные изменения численности животных, принято делить на две группы: факторы, не зависящие от плотности населения, и факторы, зависящие от нее. Представление о принципиально разном воздействии этих групп факторов на динамику плодовитости и смертности сформировалось уже давно. Факторы, не зависящие от плотности населения. К этой группе относится комплекс абиотических факторов, которые в своем воздействии на животных реализуются через составляющие климата и погоды. Биологическое влияние этих факторов характеризуется тем, что они действуют на уровне организма и именно поэтому эффект их воздействия не связан с такими специфическими популяционными параметрами, как численность и плотность. А.С. Мончадский  делил факторы на первично-периодические (солнечная радиация, температура), вторично-периодические (атмосферная влажность, урожай кормовых растений, внутривидовые отношения) и изменяющиеся незакономерно (осадки, ветер, паразиты, хищники, болезни). Из них ведущую роль в формировании циклов численности он отводил вторично-периодическим факторам, поскольку к первично-периодическим эволюционно вырабатываются эффективные адаптации, а непериодические факторы влияют на численность случайным образом. Эффект воздействия климатических факторов на уровень численности и направленность ее изменения реализуется в первую очередь через изменения смертности, возрастающей по мере отклонения силы воздействующего фактора от оптимальной величины. При этом уровень смертности и выживания определяется только силой воздействующего фактора с учетом адаптивных возможностей организма и некоторых характеристик среды: наличие убежищ с более благоприятными условиями, смягчающее действие попутных факторов и т. п.

Роль факторов, не зависящих от плотности населения, в формировании циклов динамики численности связана с цикличным характером многолетних изменении климата и типов погод. На этой основе возникла гипотеза «климатических циклов». Большой обзор этой проблемы сделан А.А. Максимовым, обобщая эти исследования, автор подчеркивает комплексный характер влияния солнечной активности на формирование природных циклов, одним из элементов которых является и динамика численности. В частности, разные типы погод определяют степень обводнения территории и соответственно тип вспышек численности; эти разные типы по-разному связаны с фазами цикла солнечной активности.

Многолетние исследования популяций водяной полевки в Западной Сибири показали, что на фоне природных циклов, связанных с комплексом климатических изменений, регистрируется динамика демографической структуры популяций, физиологического состояния особей и соотношения фенотипов в составе населения. Эти данные свидетельствуют об активной реакции популяционной системы на динамику плотности население, мнение многих экологов сводится к тому, что климатические факторы, несомненно, могут быть причиной заметных изменений численности, в том числе и имеющих цикличный характер. Но помимо этих факторов динамика численности определяется и многими другими. Кроме того, действие климатических факторов не приводит к созданию устойчивого равновесия: эти факторы не способны реагировать на изменения плотности, т. е. действовать по принципу обратных связей. По классификации Г.А. Викторова (1967), основанной на роли факторов в формировании характера динамики численности, метеорологические условия относятся к категории модифицирующих факторов.

Факторы, зависящие от плотности населения. Эта группа факторов («факторы авторегуляции» или эндогенные факторы) включает влияние на уровень и динамику численности данного вида его пищи, хищников, возбудителей болезней и др. Г.А Викторов (1965, 1967), создавший объективно обоснованную концепцию факторов динамики численности, относит биотические взаимодействия к категории регулирующих факторов (механизмов) именно на основе способности популяций реагировать как на изменения собственной плотности, так и плотности популяций других видов, с которыми они связаны трофическими или иными взаимоотношениями. Регуляция в этом случае осуществляется по кибернетическому принципу обратных связей. Одна из важных для формирования циклов численности форм биотических взаимоотношений — отношения потребителя и его пищи. В наиболее простом варианте роль пищи как фактора индукции циклов сводится к тому, что высокая обеспеченность пищей вызывает рост рождаемости и уменьшение смертности в популяции потребителей. В результате их численность нарастает, что ведет к усиленному выеданию пищи и соответственно к снижению ее численности (биомассы). Последнее же означает ухудшение условий жизни потребителя, падение рождаемости, увеличение смертности и снижение численности. В результате снижается пресс на популяцию кормовых организмов, повышается ее численность (биомасса), что способствует росту численности потребителя, и цикл начинается снова. Классический пример такого рода взаимоотношений — так называемые «лемминговые циклы», сопровождающиеся катастрофическими нарушениями тундровой растительности, массовыми ненаправленными миграциями и гибелью животных.

Популяционные циклы. Изменения численности, вызванные влиянием комплекса факторов, реализуются в виде изменения плотности населения — одного из важнейших параметров, определяющих условия функционирования популяции как системы. Таким образом, все сложные влияния, определяющие динамику рождаемости и смертности, трансформируются через механизмы популяционной авторегуляции.

В схеме механизмы формирования адаптивного ответа популяции на изменения плотности населения, независимо от конкретных причин этих изменений, могут быть представлены тремя вариантами.

Вариант 1 — «Информатор = Регулятор». Имеется в виду, что конкретный фактор, выступающий в роли источника информации о плотности населения, одновременно обладает физиологическим действием, прямо влияющим на плодовитость или (и) смертность.

Этот вариант регуляции очень широко распространен среди многих таксонов животных, а также и других организмов в виде химической регуляции. При этом чаще всего в качестве регулятора выступают какие-либо метаболиты, концентрация которых в среде изменяется параллельно изменениям плотности населения.

Вариант 2 — «Информатор -> Поведение — Регулятор». Этот вариант свойствен животным, для которых роль поведения в адаптации, в том числе и на популяционном уровне, очень велика. Имеется в виду ситуация, при которой фактор, несущий информацию о плотности, стимулирует специфические формы поведения, которые непосредственно влияют на уровень смертности и размножения. В простейшем виде информация о возрастающей плотности выражается в увеличении частоты контактов, в том числе агрессивных; в конечном итоге это может привести к увеличению смертности через нарушения родительского поведения (гибель детенышей при перетаскивании их из убежища в убежище, нарушения лактации и пр.).    Вариант 3 — «Информатор —> Поведение -> Физиология = Регулятор». Этот, наиболее сложный, вариант свойствен высшим животным, в первую очередь млекопитающим. В этом случае вся сумма информации о плотности мотивирует проявление определенных форм поведения, в свою очередь стимулирующих формирование специфических физиологических реакций, эффект которых проявляется в изменении уровня репродукции, физиологического состояния, определяющего устойчивость к внешним воздействиям, и некоторых других особенностей.

Динамика численности животных представляет собой внешнее выражение всей суммы взаимодействия популяции с внешними и внутренними условиями ее жизни. Изменения численности происходят под влиянием сложного комплекса факторов, действие которых трансформируется через внутрипопуляционные регулирующие механизмы. При этом изменения численности связываются со сложной динамикой структуры популяций и важнейших популяционных параметров. Таким образом, динамичность характеризует не только численность популяций, но и их фундаментальные свойства. По существу, следует говорить не о динамике численности, а о популяционных циклах, отражающих интегрированный результат сложных внутрипопуляционных взаимоотношений и взаимодействия популяций разных видов в составе природных экосистем.