<= Закрыть

Известные экологи

Владимир Вернадский

Эдуард Зюсс

 

Джеймс Лавлок

Круговорот важнейших химических элементов в биосфере: углерода, азота, фосфора, кислорода.

Углерод в биосфере часто представлен наиболее подвижной формой – C02. Источником является вулканическая деятельность, связанная с вековой дегазацией мантии и нижних слоев земной коры.

Миграция C02 в биосфере Земли протекает двумя путями:

1-й путь закладывается в поглощение его в процессе фотосинтеза с образованием органических веществ и последующем захоронении их в литосфере в виде торфа, угля, горных сланцы, рассеянной органики, осадочных горных пород. Так, в далёкие геологические эпохи сотни млн. лет назад значительная часть фотосинтетического органического вещества не использовалась ни консументами, ни редуцентами, а накапливалась и постепенно погребалась под различными минеральными осадками. Находясь в породах млн. лет, этот детрит под действием высоких t и P (процесс метаморфизации) превращался в нефть, природный газ и уголь (в зависимости от исходного материала, продолжительности и условий пребывания в породах). Теперь в ограниченных количествах добывают это ископаемое топливо для обеспечения потребностей в энергии, а сжигая его, в определённом смысле завершают круговорот углерода.

По 2-му пути миграция С осуществляется созданием карбонатной системы в различных водоемах, где CO2 переходит в H2CO3, HCO31-, CO32-. Затем с помощью растворенного в воде кальция происходит осаждение карбонатов CaCO3 биогенным и абиогенным путями. Возникают мощные толщи известняков. Наряду с этим большим круговоротом углерода существует еще ряд малых его круговоротов на поверхности суши и в океане. В пределах суши, где существуют растения, CO2 атмосферы поглощается в процессе фотосинтеза в дневное время. В ночное время часть его выделяется растениями во внешнюю среду. С гибелью растений и животных на поверхности происходит окисление органических веществ с образованием CO2. Особое место в современном круговороте веществ занимает массовое сжигание органических веществ и постепенное возрастание содержания CO2 в атмосфере, связанное с ростом промышленного производства и транспорта.

Азот.

При гниении органических веществ значительная часть содержащегося в них азота превращается в NH4, который под влиянием живущих в почве трифицирующих бактерий окисляется в азотную кислоту. Она вступая в реакцию с находящимся в почве карбонатами (например с СаСО3), образует нитраты:

2HN03 + СаСО3 à Са(NО3)2 + СО2 + Н20

Некоторая же часть азота всегда выделяется при гниении в свободном виде в атмосферу. Свободный азот выделяется также при горении органических веществ, при сжигание дров, каменного угля, торфа. Кроме того, существуют бактерии, которые при недостаточном доступе воздуха могут отнимать O2 от нитратов, разрушая их с выделением свободного азота. Деятельность этих денитрифицирующих бактерий приводит к тому, что часть азота из доступной для зеленых растений формы (нитраты) переходит в недоступную (свободный азот). Т.о., далеко не весь азот, входивший в состав погибших растений, возвращается обратно в почву; часть его постепенно выделяется в свободном виде. Непрерывная убыль минеральных азотных соединений давно должна была бы привести к полному прекращению жизни на Земле, если бы в природе не существовали процессы возмещения потери азота. К таким процессам относятся прежде всего происходящие в атмосфере электрические разряды, при которых всегда образуется некоторое количество оксидов азота; последние с водой дают азотную кислоту, превращаясь в почве в нитраты. Другим источником попадания азотных соединений почвы является жизнедеятельность так называемых азотобактерий, способных усваивать атмосферный азот. Некоторые из этих бактерий поселяются на корнях растений из семейства бобовых, вызывая образования характерных вздутий — «клубеньков». Усваивая атмосферный азот, клубеньковые бактерии перерабатывают его в азотные соединения, а растения, в свою очередь, превращают последние в белки и другие сложные вещества. Таким образом, в природе совершается непрерывный круговорот азота. Однако ежегодно с урожаем с полей убираются наиболее богатые белками части растений, например зерно. Поэтому в почву необходимо вносить удобрения, возмещающие убыль в ней важных элементов питания растений.

Фосфор входит в состав генов и молекул, переносящих энергию внутрь клеток. В различных минералах P содержится в виде неорганического фосфатиона (PO43-). Фосфаты растворимы в воде, но не летучи. Растения поглощают PO43- из водного раствора и включают фосфор в состав различных органических соединений, где он выступает в форме т.н. органического фосфата. По пищевым цепям P переходит от растений ко всем прочим организмам экосистемы. При каждом переходе велика вероятность окисления содержащегося P соединения в процессе клеточного дыхания для получения органической энергии. Когда это происходит, фосфат в составе мочи или ее аналога вновь поступает в окружающую среду, после чего снова может поглощаться растениями и начинать новый цикл. В отличие, например, от CO2, который, где бы он ни выделялся в атмосферу, свободно переносится в ней воздушными потоками, пока снова не усвоится растениями, у фосфора нет газовой фазы и, следовательно, нет «свободного возврата» в атмосферу. Попадая в водоемы, фосфор насыщает, а иногда и перенасыщает экосистемы. Обратного пути, по сути дела, нет. Что-то может вернуться на сушу с помощью рыбоядных птиц, но это очень небольшая часть общего количества, оказывающаяся к тому же вблизи побережья. Океанические отложения фосфата со временем поднимаются над поверхностью воды в результате геологических процессов, но это происходит в течение миллионов лет.

Кислород. Кислород - наиболее активный газ. В пределах биосферы происходит быстрый обмен кислорода среды с живыми организмами или их остатками после гибели.

В составе земной атмосферы кислород занимает второе место после азота. Господствующей формой нахождения кислорода в атмосфере является молекула О2. Круговорот кислорода в биосфере весьма сложен, поскольку он вступает во множество химических соединений минерального и органического миров.

Свободный кислород современной земной атмосферы является побочным продуктом процесса фотосинтеза зеленых растений и его общее количество отражает баланс между продуцированием кислорода и процессами окисления и гниения различных веществ. В истории биосферы Земли наступило такое время, когда количество свободного кислорода достигло определенного уровня и оказалось сбалансированным таким образом, что количество выделяемого кислорода стало равным количеству поглощаемого кислорода.