<= Закрыть

Известные экологи

Владимир Вернадский

Эдуард Зюсс

 

Джеймс Лавлок

Электрохимическая обработка сточных вод.

 Для очистки сточных вод от различных растворимых и диспергированных примесей применяют процессы анодного окисления и катодного восстановления, электрокоагуляции, электрофлотации, электродиализа. Все эти процессы протекают на электродах при пропускании через сточную воду постоянного электрического тока. Электрохимические методы обработки позволяют достаточно просто извлекать из сточных вод ценные продукты без использования химических реагентов. Основным недостатком этих методов является большой расход электроэнергии.

Анодное окисление и катодное восстановление протекают в электролизере. На положительном электроде (аноде) ионы отдают электроны, т.е. протекает реакция электрохимического окисления; на отрицательном электроде (катоде) происходит присоединение электронов, т.е. протекает реакция восстановления. При этом удаляются цианиды, роданиды, амины, спирты, альдегиды, нитросоединения, азокрасители, сульфиды, меркаптаны и др. Они полностью распадаются с образованием диоксида углерода, воды и аммиака или других нетоксичных соединений, которые удаляются иными методами.

Электрокоагуляция находит применение в различных отраслях промышленности. Процесс заключается в пропускании сточных вод через межэлектродное пространство электролизера. При этом происходит электролиз воды, поляризация частиц, электрофорез, окислительно-восстановительные процессы, взаимодействие продуктов электролиза друг с другом.

Для обработки промышленных сточных вод, содержащих высокоустойчивые загрязнения, электролиз проводится с использованием растворимых стальных или алюминиевых анодов. Под действием тока происходит растворение металла, в результате чего в воду переходят катионы железа или алюминия, которые, встречаясь с гидроксильными группами, образуют гидроксиды металлов, при этом протекает интенсивная коагуляция с выпадением хлопьев в осадок.

Электрофлотация - очистка от взвешенных частиц происходит при помощи пузырьков газа, образующихся при электролизе воды. На аноде возникают пузырьки кислорода, а на катоде - водорода. Поднимаясь в сточной воде, эти пузырьки флотируют взвешенные частицы. При использовании растворимых электродов кроме пузырьков газа происходит образование гидроксидов металлов, как при электрокоагуляции, что способствует более эффективной очистке сточных вод.

Электродиализ основан на разделении ионизированных веществ под действием электродвижущей силы, создаваемой в растворе по обе стороны мембраны. Этот процесс широко используется для опреснения соленых вод. Метод можно применять для обработки сточных вод, если они не содержат взвешенных веществ. При обработке методом электродиализа сточных вод, содержащих соли кислот и оснований, можно получать кислоты и щелочи и вновь использовать их в производстве. Электроды для электродиализаторов должны изготавливаться из стойких к окислителям материалов: платины, магнетита, графита. Электродиализ может быть использован для очистки радиоактивных вод.

 

Биологическая очистка сточных вод осуществляется при помощи живых организмов разного уровня организации. Существуют два направления биологической очистки: метод биологической очистки и метод биологической доочистки сточных вод.

Метод основан на способности некоторых микроорганизмов питаться растворенными в воде органическими и некоторыми неорганическими веществами. В процессе потребления этих веществ происходит их окисление кислородом, растворенным в воде. Часть окисляемого микроорганизмами вещества используется для увеличения биомассы и для размножения этих организмов, а другая превращается в безвредные продукты окисления - воду, диоксиды углерода, азота и др.

Для создания новых клеток микроорганизмы используют углерод, водород, кислород, серу и микроэлементы, которые они получают из разрушаемых органических веществ. Недостающие для построения клеток элементы, чаще всего азот, фосфор и калий, приходится добавлять в очищаемые стоки в виде солей или очищать производственные сточные воды совместно с бытовыми.

Микроорганизмы, которые участвуют в процессе биологической очистки, формируются в виде активного ила или биопленки. Активный ил имеет вид буро-желтых мелких хлопьев размером 3-150 мкм, взвешенных в воде и представляющих собой колонии живых микроорганизмов, в том числе бактерий, образующих слизистые капсулы (зооглеи). Биопленка - это слизистые обрастания живыми микроорганизмами фильтрующего материала очистных сооружений.

На интенсивность и эффективность очистки оказывают влияние условия жизнедеятельности микроорганизмов в очистных сооружениях. Прежде всего для окисления органических веществ микроорганизмам необходим кислород. Для насыщения сточной воды кислородом ее аэрируют, разбивая воздушный поток на пузырьки, которые как можно более равномерно распределяют в объеме сточной воды. Из пузырьков воздуха кислород абсорбируется водой, а затем переносится к микроорганизмам. Недостаточная подача воздуха замедляет процесс очистки.

Большое значение имеет температурный режим биологической очистки. При понижении температуры сточной воды с 20 до 6 °С скорость процесса очистки замедляется примерно в два раза, а при увеличении температуры от 20 до 37 °С скорость биохимического окисления повышается в 2 - 2,5 раза.

Наиболее благоприятной средой для бактерий является нейтральная или слабощелочная. При 9 < рН < 5 эффективность очистки резко снижается.

Эффективность биологической очистки также зависит от количества активного ила в очищаемой сточной воде. Чем больше концентрация ила в воде, тем интенсивнее процесс очистки, при условии, что в воде имеется достаточное количество кислорода, обеспечивается хорошее перемешивание воды, ила и воздуха. Обычно концентрация ила поддерживается в пределах 2-4 г/л.

На практике используют два метода биологической очистки сточных вод - аэробный и анаэробный.

Аэробный метод осуществляется бактериями при наличии в воде кислорода. Аэробные процессы биологической очистки могут протекать в естественных условиях и в искусственных сооружениях. В естественных условиях очистка происходит на полях орошения, полях фильтрации и биологических прудах. Естественные процессы биологической очистки являются экстенсивными, и в настоящее время они гораздо реже используются в практике очистки промышленных сточных вод.

В искусственных сооружениях процессы очистки протекают с гораздо большей скоростью, чем в естественных условиях, поэтому аэробная биологическая очистка промышленных сточных вод является основным методом во многих отраслях промышленности.

Имеется много видов и конструкций аэротенков, но все они построены по одному принципу: смесь воды и активного ила медленно движется по прямоугольным вытянутой формы резервуарам (секциям) аэротенка и непрерывно насыщается воздухом, подаваемым в воду через фильтросы, уложенные на дно резервуара вдоль его продольной стенки или другим способом. Пузырьки воздуха, поднимаясь, перемешивают активный ил со сточными водами и не дают хлопьям оседать на дно аэротенка.

Аэротенки могут быть классифицированы по гидродинамическому режиму работы как аэротенки идеального вытеснения; аэротенки идеального смешения; аэротенки промежуточного типа. На практике чаще всего применяют аэротенки-вытеснители и аэротенки-смесители.

На рис. 15 показана схема аэротенка-вытеснителя.

Рис. 15. Схема аэротенка-вытеснителя

Очищаемая вода через первичный отстойник 1 по вводу 2 поступает в аэротенк 3 и, пройдя его, по выводу 4 попадает во вторичный отстойник 5, в котором отделяется активный ил. Очищенная вода по трубопроводу 6 отправляется на дальнейшую обработку. Часть активного ила по трубопроводу возвратного ила 8 возвращается в процесс очистки (в голову аэротенка), а излишек удаляется из системы через трубопровод 7.

Аэротенки-вытеснители имеют ряд недостатков; в частности, в них нельзя повысить интенсивность процесса очистки, увеличивая концентрацию активного ила. Они очень чувствительны к перегрузкам, поэтому после каждого нарушения режима требуется длительное время для восстановления работоспособности системы.

Более целесообразно применение аэротенков-смесителей, в которых смесь сточной воды и активного ила вводится вдоль всей продольной стенки аэротенка, а вывод осуществляется с противоположной стороны. При этом порции поступающего стока почти мгновенно перемешиваются со всей массой очищаемой жидкости и активного ила, что позволяет равномерно распределить загрязнения и растворенный кислород в объеме аэротенка.

Схема устройства аэротенка-смесителя показана на рис. 16.

Рис. 16. Схема аэротенка-смесителя: 1 - первичный отстойник; 2 - ввод очищенной воды в аэротенк; 3 - аэротенк; 4 - отвод воды из аэротенка; 5 - вторичный отстойник; 6 - вывод очищенной воды из системы; 7 - отвод избыточного активного ила; 8 - трубопровод возврата активного ила

Разработана и широко используется очистка сточных вод в окситенках с использованием вместо воздуха чистого кислорода и активного ила с высокой концентрацией. Концентрацию кислорода в воде окситенков доводят до 10 - 12 мг/л (вместо 2-4 мг/л в аэротенках), а дозу активного ила до 15 г/л (в аэротенках - 2 - 4 г/л); при этом окислительная мощностьокситенков оказывается выше, чем у аэротенков, в 5 - 6 раз. Этот способ целесообразно использовать на тех предприятиях, где имеется собственный технический кислород, или он может быть получен с соседних химических предприятий.

Для аэробной очистки также применяют биофильтры. Это сооружения, в корпусе которых размещается кусковая насадка и предусмотрены распределительные устройства для сточной воды и воздуха. В биофильтрах сточная вода фильтруется через слой загрузки, покрытой пленкой микроорганизмов, которые окисляют органические вещества, используя их для удовлетворения физиологических нужд. Таким образом, из сточной воды удаляются органические соединения, а масса активной биопленки увеличивается. Отработанная биопленка смывается протекающей сточной водой и выносится из биофильтра. На процесс очистки в биофильтре значительное влияние оказывает температура внешней среды. Биохимические процессы протекают с выделением тепла, биофильтры сами себя обогревают, а крупные установки, защищенные от потери тепла, работают и при небольших морозах (до - 6 °С).

Биофильтры имеют много недостатков. Управлять процессом очистки в них можно только, регулируя подачу воды; они заиливаются, отчего резко падает их окислительная способность; в процессе работы биофильтра часто возникают неприятные запахи; в них заводятся неспецифические организмы, в частности личинки мух, которые разрыхляют биопленку, ее уносит с водой.

Заключительным этапом биологической очистки сточных вод является очистка или доочистка предварительно очищенных сточных вод в биологических прудах. Биологические пруды представляют собой каскад сооружений глубиной 1,0 - 1,5 м, через которые с незначительной скоростью протекают подготовленные сточные воды. Различают пруды с естественной и искусственной аэрацией. Время пребывания в прудах зависит от вида и концентрации загрязнений, степени предварительной очистки, дальнейшего использования очищенной воды и колеблется в пределах 3 -50 сут. Если пруды имеют искусственную аэрацию, то время пребывания воды в них значительно сокращается.

Биологические пруды имеют существенные недостатки, ограничивающие их применение: сезонность работы, низкая окислительная способность, занимают большие площади, наличие застойных (нерабочих зон), неуправляемость процесса очистки, сложность в эксплуатации.

Иногда очистку осуществляют на полях орошения. Это специально подготовленные участки, используемые одновременно для очистки сточных вод и агрокультурных целей. Очистка сточных вод на полях орошения производится с помощью почвенной микрофлоры, солнца, воздуха и жизнедеятельности

В процессе биологический очистки в отстойниках образуются осадки, которые необходимо периодически из них удалять. Обработка или утилизация этих осадков весьма затруднительна из-за большого их объема, переменного состава, наличия целого ряда токсичных для живых организмов веществ, высокой влажности.

Отходы, которые в настоящее время нельзя использовать, направляются в шламонакопители для захоронения. Шламонакопители представляют собой открытые земляные емкости. После полного заполнения они консервируются, и шлам подают уже в другие накопители.

Анаэробный метод биологической очистки основан на использовании бактерий, не нуждающихся в кислороде, и заключается в сбраживании загрязняющих воду органических веществ в закрытых аппаратах без доступа воздуха - метантенках. Применение этого метода ограниченно, его обычно используют для предварительной подготовки сточных вод, чтобы снизить концентрацию органических загрязнителей в 10-20 раз, а затем проводить дальнейшую очистку уже аэробными способами. Однако из-за сложности такого двухступенчатого процесса анаэробный метод редко применяется на практике. Наиболее перспективно его использование для сбраживания осадков и избыточного активного ила в метантенках с получением биогаза.

Для обезвреживания минерализованных сточных вод в настоящее время в основном используют термические методы, которые позволяют выделить из сточных вод соли и получить условно чистую воду, пригодную для нужд оборотного водоснабжения. Процесс разделения минеральных веществ и воды может быть проведен в две стадии: стадия концентрирования и стадия выделения сухих веществ. Во многих случаях вторая стадия заменяется захоронением концентрированных растворов. Концентрированные сточные воды можно непосредственно направлять на выделение сухого продукта, например в распылительную сушилку.

Получение очищенной воды из минерализованных сточных вод можно вести в испарительных, вымораживающих и кристаллогидратных установках непрерывного и периодического действия.

На практике обычно используют одно- и многокорпусные выпарные установки, включающие аппараты с естественной и принудительной циркуляцией. Для упаривания сточных вод целого ряда производств применяют выпарные установки с контактными устройствами. В них осуществляется непосредственный контакт между теплоносителем и водой. Для нагрева воды могут использоваться газообразные, жидкие и твердые теплоносители.